Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Stochastic precision analysis of 2D cardiac strain estimation in vivo.

Identifieur interne : 001A78 ( Main/Exploration ); précédent : 001A77; suivant : 001A79

Stochastic precision analysis of 2D cardiac strain estimation in vivo.

Auteurs : E A Bunting [États-Unis] ; J. Provost ; E E Konofagou

Source :

RBID : pubmed:25330746

Descripteurs français

English descriptors

Abstract

Ultrasonic strain imaging has been applied to echocardiography and carries great potential to be used as a tool in the clinical setting. Two-dimensional (2D) strain estimation may be useful when studying the heart due to the complex, 3D deformation of the cardiac tissue. Increasing the framerate used for motion estimation, i.e. motion estimation rate (MER), has been shown to improve the precision of the strain estimation, although maintaining the spatial resolution necessary to view the entire heart structure in a single heartbeat remains challenging at high MERs. Two previously developed methods, the temporally unequispaced acquisition sequence (TUAS) and the diverging beam sequence (DBS), have been used in the past to successfully estimate in vivo axial strain at high MERs without compromising spatial resolution. In this study, a stochastic assessment of 2D strain estimation precision is performed in vivo for both sequences at varying MERs (65, 272, 544, 815 Hz for TUAS; 250, 500, 1000, 2000 Hz for DBS). 2D incremental strains were estimated during left ventricular contraction in five healthy volunteers using a normalized cross-correlation function and a least-squares strain estimator. Both sequences were shown capable of estimating 2D incremental strains in vivo. The conditional expected value of the elastographic signal-to-noise ratio (E(SNRe|ε)) was used to compare strain estimation precision of both sequences at multiple MERs over a wide range of clinical strain values. The results here indicate that axial strain estimation precision is much more dependent on MER than lateral strain estimation, while lateral estimation is more affected by strain magnitude. MER should be increased at least above 544 Hz to avoid suboptimal axial strain estimation. Radial and circumferential strain estimations were influenced by the axial and lateral strain in different ways. Furthermore, the TUAS and DBS were found to be of comparable precision at similar MERs.

DOI: 10.1088/0031-9155/59/22/6841
PubMed: 25330746


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Stochastic precision analysis of 2D cardiac strain estimation in vivo.</title>
<author>
<name sortKey="Bunting, E A" sort="Bunting, E A" uniqKey="Bunting E" first="E A" last="Bunting">E A Bunting</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biomedical Engineering, Columbia University, New York, NY, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Columbia University, New York, NY</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">New York</settlement>
</placeName>
<orgName type="university">Université Columbia</orgName>
</affiliation>
</author>
<author>
<name sortKey="Provost, J" sort="Provost, J" uniqKey="Provost J" first="J" last="Provost">J. Provost</name>
</author>
<author>
<name sortKey="Konofagou, E E" sort="Konofagou, E E" uniqKey="Konofagou E" first="E E" last="Konofagou">E E Konofagou</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25330746</idno>
<idno type="pmid">25330746</idno>
<idno type="doi">10.1088/0031-9155/59/22/6841</idno>
<idno type="wicri:Area/PubMed/Corpus">001810</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001810</idno>
<idno type="wicri:Area/PubMed/Curation">001810</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001810</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001736</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001736</idno>
<idno type="wicri:Area/Ncbi/Merge">000F37</idno>
<idno type="wicri:Area/Ncbi/Curation">000F37</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000F37</idno>
<idno type="wicri:Area/Main/Merge">001A84</idno>
<idno type="wicri:Area/Main/Curation">001A78</idno>
<idno type="wicri:Area/Main/Exploration">001A78</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Stochastic precision analysis of 2D cardiac strain estimation in vivo.</title>
<author>
<name sortKey="Bunting, E A" sort="Bunting, E A" uniqKey="Bunting E" first="E A" last="Bunting">E A Bunting</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biomedical Engineering, Columbia University, New York, NY, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Columbia University, New York, NY</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">New York</settlement>
</placeName>
<orgName type="university">Université Columbia</orgName>
</affiliation>
</author>
<author>
<name sortKey="Provost, J" sort="Provost, J" uniqKey="Provost J" first="J" last="Provost">J. Provost</name>
</author>
<author>
<name sortKey="Konofagou, E E" sort="Konofagou, E E" uniqKey="Konofagou E" first="E E" last="Konofagou">E E Konofagou</name>
</author>
</analytic>
<series>
<title level="j">Physics in medicine and biology</title>
<idno type="eISSN">1361-6560</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Echocardiography (methods)</term>
<term>Elasticity Imaging Techniques (methods)</term>
<term>Heart (physiopathology)</term>
<term>Heart Rate</term>
<term>Heart Ventricles (diagnostic imaging)</term>
<term>Humans</term>
<term>Image Interpretation, Computer-Assisted (methods)</term>
<term>Signal-To-Noise Ratio</term>
<term>Stochastic Processes</term>
<term>Stress, Mechanical</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adulte</term>
<term>Coeur (physiopathologie)</term>
<term>Contrainte mécanique</term>
<term>Humains</term>
<term>Imagerie d'élasticité tissulaire ()</term>
<term>Interprétation d'image assistée par ordinateur ()</term>
<term>Processus stochastiques</term>
<term>Rapport signal-bruit</term>
<term>Rythme cardiaque</term>
<term>Ventricules cardiaques (imagerie diagnostique)</term>
<term>Échocardiographie ()</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnostic imaging" xml:lang="en">
<term>Heart Ventricles</term>
</keywords>
<keywords scheme="MESH" qualifier="imagerie diagnostique" xml:lang="fr">
<term>Ventricules cardiaques</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Echocardiography</term>
<term>Elasticity Imaging Techniques</term>
<term>Image Interpretation, Computer-Assisted</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathologie" xml:lang="fr">
<term>Coeur</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Heart</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Heart Rate</term>
<term>Humans</term>
<term>Signal-To-Noise Ratio</term>
<term>Stochastic Processes</term>
<term>Stress, Mechanical</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adulte</term>
<term>Contrainte mécanique</term>
<term>Humains</term>
<term>Imagerie d'élasticité tissulaire</term>
<term>Interprétation d'image assistée par ordinateur</term>
<term>Processus stochastiques</term>
<term>Rapport signal-bruit</term>
<term>Rythme cardiaque</term>
<term>Échocardiographie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ultrasonic strain imaging has been applied to echocardiography and carries great potential to be used as a tool in the clinical setting. Two-dimensional (2D) strain estimation may be useful when studying the heart due to the complex, 3D deformation of the cardiac tissue. Increasing the framerate used for motion estimation, i.e. motion estimation rate (MER), has been shown to improve the precision of the strain estimation, although maintaining the spatial resolution necessary to view the entire heart structure in a single heartbeat remains challenging at high MERs. Two previously developed methods, the temporally unequispaced acquisition sequence (TUAS) and the diverging beam sequence (DBS), have been used in the past to successfully estimate in vivo axial strain at high MERs without compromising spatial resolution. In this study, a stochastic assessment of 2D strain estimation precision is performed in vivo for both sequences at varying MERs (65, 272, 544, 815 Hz for TUAS; 250, 500, 1000, 2000 Hz for DBS). 2D incremental strains were estimated during left ventricular contraction in five healthy volunteers using a normalized cross-correlation function and a least-squares strain estimator. Both sequences were shown capable of estimating 2D incremental strains in vivo. The conditional expected value of the elastographic signal-to-noise ratio (E(SNRe|ε)) was used to compare strain estimation precision of both sequences at multiple MERs over a wide range of clinical strain values. The results here indicate that axial strain estimation precision is much more dependent on MER than lateral strain estimation, while lateral estimation is more affected by strain magnitude. MER should be increased at least above 544 Hz to avoid suboptimal axial strain estimation. Radial and circumferential strain estimations were influenced by the axial and lateral strain in different ways. Furthermore, the TUAS and DBS were found to be of comparable precision at similar MERs. </div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
<settlement>
<li>New York</li>
</settlement>
<orgName>
<li>Université Columbia</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Konofagou, E E" sort="Konofagou, E E" uniqKey="Konofagou E" first="E E" last="Konofagou">E E Konofagou</name>
<name sortKey="Provost, J" sort="Provost, J" uniqKey="Provost J" first="J" last="Provost">J. Provost</name>
</noCountry>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Bunting, E A" sort="Bunting, E A" uniqKey="Bunting E" first="E A" last="Bunting">E A Bunting</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A78 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A78 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25330746
   |texte=   Stochastic precision analysis of 2D cardiac strain estimation in vivo.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25330746" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021